Paper Reference(s) 66664/01 Edexcel GCE

Core Mathematics C2

Advanced Subsidiary

Thursday 22 May 2014 – Morning

Time: 1 hour 30 minutes

Materials required for examination Mathematical Formulae (Pink) Items included with question papers Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

Write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Core Mathematics C2), the paper reference (6664), your surname, initials and signature.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for the parts of questions are shown in round brackets, e.g. (2). There are 10 questions in this question paper. The total mark for this paper is 75.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

P43177A This publication may only be reproduced in accordance with Pearson Education Limited copyright policy. ©2014 Pearson Education Limited.

Figure 1 shows a sketch of part of the curve with equation $y = \sqrt{x^2 + 1}$, $x \ge 0$.

The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis and the lines x = 1 and x = 2.

The table below shows corresponding values for x and y for $y = \sqrt{x^2 + 1}$.

x	1	1.25	1.5	1.75	2
у	1.414		1.803	2.016	2.236

(a) Complete the table above, giving the missing value of y to 3 decimal places.

(1)

(b) Use the trapezium rule, with all the values of y in the completed table, to find an approximate value for the area of *R*, giving your answer to 2 decimal places.

(4)

(2)

$$f(x) = 2x^3 - 7x^2 + 4x + 4.$$

- (a) Use the factor theorem to show that (x 2) is a factor of f(x).
- (b) Factorise f(x) completely. (4)

2.

3. (a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of $(2 - 3x)^6$, giving each term in its simplest form.

(4)

(b) Hence, or otherwise, find the first 3 terms, in ascending powers of x, of the expansion of

$$\left(1+\frac{x}{2}\right)(2-3x)^6.$$
 (3)

4. Use integration to find

$$\int_{1}^{\sqrt{3}} \left(\frac{x^3}{6} + \frac{1}{3x^2} \right) dx,$$

giving your answer in the form $a + b\sqrt{3}$, where a and b are constants to be determined.

(5)

Figure 2

The shape *ABCDEA*, as shown in Figure 2, consists of a right-angled triangle *EAB* and a triangle *DBC* joined to a sector *BDE* of a circle with radius 5 cm and centre *B*.

The points A, B and C lie on a straight line with BC = 7.5 cm.

Angle $EAB = \frac{\pi}{2}$ radians, angle $EBD = 1.4$ radians and $CD = 6.1$ cm.	
(a) Find, in cm^2 , the area of the sector <i>BDE</i> .	(2)
(<i>b</i>) Find the size of the angle <i>DBC</i> , giving your answer in radians to 3 decimal places.	(2)
(c) Find, in cm^2 , the area of the shape <i>ABCDEA</i> , giving your answer to 3 significant figures.	(5)
The first term of a geometric series is 20 and the common ratio is $\frac{7}{8}$. The sum to infinity of series is S_{∞} .	the
(a) Find the value of S_{∞} .	(2)
The sum to N terms of the series is S_N .	
(<i>b</i>) Find, to 1 decimal place, the value of S_{12} .	(2)
(c) Find the smallest value of N, for which $S_{\infty} - S_N < 0.5$.	(4)

6.

7. (i) Solve, for $0 \le \theta < 360^\circ$, the equation 9 sin $(\theta + 60^\circ) = 4$, giving your answers to 1 decimal place. You must show each step of your working.

(4)

(ii) Solve, for $-\pi \le x < \pi$, the equation $2 \tan x - 3 \sin x = 0$, giving your answers to 2 decimal places where appropriate.

[Solutions based entirely on graphical or numerical methods are not acceptable.]

(5)

8. (*a*) Sketch the graph of

$$y=3^x, x\in\mathbb{R},$$

showing the coordinates of any points at which the graph crosses the axes.

(2)

(b) Use algebra to solve the equation $3^{2x} - 9(3^x) + 18 = 0$, giving your answers to 2 decimal places where appropriate.

(5)

9.

Figure 3

Figure 3 shows a circle C with centre Q and radius 4 and the point T which lies on C. The tangent to C at the point T passes through the origin O and $OT = 6\sqrt{5}$.

Given that the coordinates of Q are (11, k), where k is a positive constant,

(*a*) find the exact value of *k*,

		(3)
(<i>b</i>)	find an equation for C.	

(2)

Figure 4 shows a closed letter box *ABFEHGCD*, which is made to be attached to a wall of a house.

The letter box is a right prism of length y cm as shown in Figure 4. The base *ABFE* of the prism is a rectangle. The total surface area of the six faces of the prism is $S \text{ cm}^2$.

The cross section *ABCD* of the letter box is a trapezium with edges of lengths DA = 9x cm, AB = 4x cm, BC = 6x cm and CD = 5x cm as shown in Figure 5.

The angle $DAB = 90^{\circ}$ and the angle $ABC = 90^{\circ}$. The volume of the letter box is 9600 cm³.

(*a*) Show that
$$y = \frac{320}{x^2}$$
.

(2)

(b) Hence show that the surface area of the letter box, $S \text{ cm}^2$, is given by $S = 60x^2 + \frac{7680}{x}$.

- (c) Use calculus to find the minimum value of S.
- (d) Justify, by further differentiation, that the value of S you have found is a minimum.

(2)

(6)

TOTAL FOR PAPER: 75 MARKS

END

x 1 1.25 1.5 1.75 2 y 1.414 1.601 1.803 2.016 2.236	
y 1.414 1.601 1.803 2.016 2.236	n
1.(a) 1.601 (May not be in the table and ca	
{At $x = 1.25$, $y = 1.601$ (only) score if seen as part of their working i	in B1 cao
	[1]
	B1:
-1000000000000000000000000000000000000	M1 A1ft
1 1 M1. Structure of <u>A1ft:</u> for the correct expre	ession
B1; for using $\frac{1}{2} \times 0.25$ or $\frac{1}{8}$ $\frac{M11: Structure of}{\sqrt{2}}$ as shown following through	gh
or equivalent.	111
M1 requires the correct structure for the y values. It needs to contain first y value plus	last y
value and the second bracket to be multiplied by 2 and to be the summation of the rema	aining
y values in the table with no additional values. If the only mistake is a copying error of a mit one value from $2(\dots)$ brocket this may be recorded as a clin and the M mark	r is to
allowed (nb: an extra repeated term, however, forfeits the M mark). M0 if any values	s used
are x values instead of y values.	
A1ft: for the correct underlined expression as shown following through candidate's y va	alue
found in part (a). Bracketing mistakes: e.g.	
$\begin{pmatrix} 1 & 1 \end{pmatrix}$	
$\left[\frac{-1}{2}\times\frac{-1}{4}\right](1.414+2.236)+2(\text{their } 1.601+1.803+2.016)(=11.29625)$	
(b) (⁻	
$\left(\frac{1}{2} \times \frac{1}{4}\right)$ 1.414 + 2.236 + 2(their 1.601 + 1.803 + 2.016)(=13.25275)	
Both score B1 M1 A0 unless the final answer implies that the calculation has been done	
correctly (then full marks could be given).	
Alternative	
Separate trapezia may be used, and this can be marked equivalently.	
$\begin{bmatrix} 1 \\ (1,414+1,601) + 1 \\ (1,601+1,803) + 1 \\ (1,803+2,016) + 1 \\ (2,016+2,236) \end{bmatrix}$	
$\begin{bmatrix} -(1.414+1.001) + -(1.001+1.803) + -(1.003+2.010) + -(2.010+2.230) \\ 8 \end{bmatrix}$	
B1 for $\frac{1}{2}$ (act) M1 for correct structure 1st A1ft for correct expression ft their 1.601	
8	
$\left\{=\frac{1}{8}(14.49)\right\}=1.81125$ 1.81 or awrt 1.81	A1
Correct answer <u>only</u> in (b) scores no marks	
If required accuracy is not seen in (a), full marks can still be scored in (b) (e.g. uses	s 1.6)
	Total 5

Question Number	Sch	eme	Marks
	If there is no labelling, ma	rk (a) and (b) in that order	
	$f(x) = 2x^3 - 7x^2 + 4x + 4$		
	$f(2) = 2(2)^{3} - 7(2)^{2} + 4(2) + 4$	Attempts f(2) or f(-2)	M1
2. (a)	= 0, and so $(x - 2)$ is a factor.	f(2) = 0 with no sign or substitution errors $(2(2)^3 - 7(2)^2 + 4(2) + 4 = 0$ is sufficient) and for conclusion. Stating "hence factor" or "it is a factor" or a "tick" or "QED" or "no remainder" or "as required" are fine for the conclusion but not = 0 just underlined and not hence (2 or f(2)) is a factor. Note also that a conclusion can be implied from a <u>preamble</u> , eg: "If $f(2) = 0$, $(x - 2)$ is a factor"	A1
	Note: Long division scores no marks in	part (a). The <u>factor theorem</u> is required.	[2]
	$f(x) = \{(x-2)\}(2x^2 - 3x - 2)$	M1: Attempts long division by $(x - 2)$ or other method using $(x - 2)$, to obtain $(2x^2 \pm ax \pm b), a \neq 0$, even with a remainder. Working need not be seen as this could be done "by inspection."	M1 A1
(b)	$= (x - 2)(x - 2)(2x + 1) \operatorname{or} (x - 2)^{2}(2x + 1)$ or equivalent e.g. $= 2(x - 2)(x - 2)(x + \frac{1}{2}) \operatorname{or} 2(x - 2)^{2}(x + \frac{1}{2})$	A1: $(2x^2 - 3x - 2)$ d M1: Factorises a 3 term quadratic. (see rule for factorising a quadratic in the General Principles for Core Maths Marking). This is dependent on the previous method mark being awarded but there must have been no remainder. Allow an attempt to solve the quadratic to determine the factors . A1: cao – needs all three factors on one line . Ignore following work (such as a solution to a quadratic equation.)	d M1 A1
	Note $= (x-2)(\frac{1}{2}x-1)(4x+2)$ would lose the last mark as it is not fully factorised		
	For correct answers only	y award full marks in (b)	
			[4]
			Total 6

Question Number	Schem	e	Marks	
3. (a)	$(2-3x)^6 = 64 + \dots$	64 seen as the only constant term in their expansion.	B1	
	$\left\{ (2-3x)^6 \right\} = (2)^6 + \frac{^6C_1}{(2)^5} (-1)^{-5} (2)^{-5} (-1)^{-5} (2)^{-5} (-1)^{-5} (2$	$\underline{3x} + \underline{^{6}C_{2}}(2)^{4}(-3\underline{x})^{2} + \dots$	<u>M1</u>	
	M1: $\binom{6}{1} C_1 \times \times x$ or $\binom{6}{1} C_2 \times \times x^2$. For <u>either</u>	the <i>x</i> term <u>or</u> the x^2 term. Requires <u>correct</u>		
	binomial coefficient in any form with the cor coefficient (perhaps including powers of 2 and/o	rect power of x, but the other part of the $r-3$) may be wrong or missing. The terms		
	can be "listed" rather than adde	d. Ignore any extra terms.		
	${}^{6}C_{1}2^{5}-3x+{}^{6}C_{2}2^{4}-3x^{2}+$ Scores M0 u	inless later work implies a correct method		
		A1: Either $-576x$ or $2160x^2$		
	$-64-576r+2160r^{2}+$	(Allow $+ -576x$ here)	A 1 A 1	
	= 04 - 570x + 2100x +	A1: Both $-576x$ and $2160x^2$	AIAI	
		(Do not allow $+ -576x$ here)		
			[4]	
(a) Way 2	$(2-3x)^6 = 64 + \dots$	64 seen as the only constant term in their expansion.	B1	
		M1: $({}^{6}C_{1} \times \times x) \operatorname{or} ({}^{6}C_{2} \times \times x^{2})$. For		
	$\left(1 - \frac{3}{2}x\right)^{6} = 1 + \frac{{}^{6}C_{1}}{\left(\frac{-3}{2}\underline{x}\right)} + \frac{{}^{6}C_{2}}{\left(\frac{-3}{2}\underline{x}\right)^{2}} + \dots$	<u>either</u> the x term <u>or</u> the x^2 term. Requires <u>correct</u> binomial coefficient in any form <u>with the correct power of x</u> , but the other part of the coefficient (perhaps including powers of 2 and/or -3) may be wrong or missing. The terms can be "listed" rather	<u>M1</u>	
	$= 64 - 576x + 2160x^2 + \dots$	$= 64 - 576x + 2160x^{2} + \dots$ $\frac{A1: \text{ Either } -576x \text{ or } 2160x^{2}}{(Allow + -576x \text{ here})}$ $A1: \text{ Both } -576x \text{ and } 2160x^{2}$		
		(Do not allow $+ -576x$ here)		
(b)	Candidate writes down $\left(1+\frac{x}{2}\right) \times \left(\text{their part}\right)$	Candidate writes down $\left(1 + \frac{x}{2}\right) \times \left(\text{their part (a) answer, at least up to the term in } x\right).$		
	(Condone missin	ng brackets)		
	$\left(1+\frac{x}{2}\right)(64-576x+)$ or $\left(1+\frac{x}{2}\right)$	$\left(64 - 576x + 2160x^2 + \right)$ or	M1	
	$\left(1+\frac{x}{2}\right)64 - \left(1+\frac{x}{2}\right)576x \text{ or } \left(1+\frac{x}{2}\right)64 - \left(1+\frac{x}{2}\right)576x + \left(1+\frac{x}{2}\right)2160x^2$			
	or $64 + 32x, -576x - 288x^2, 2160x^2 + 1080x^3$ are fine.			
		A1: At least 2 terms correct as shown. (Allow $+ -544x$ here)		
	$= 64 - 544x + 1872x^2 + \dots$	A1: $64 - 544x + 1872x^2$	A1A1	
	The terms can be "listed" rather than added Janore any extra terms			
			[3]	
	SC: If a candidate expands in descending pov	vers of x, only the M marks are available		
	e.g. $\{(2-3x)^6\} = (-3x)^6 + \underline{^6C_1}(2)$	$)^{2}(-3\underline{x})^{5} + ^{6}C_{2}(2)^{2}(-3\underline{x})^{4} + \dots$		

Question Number	Scheme		Marks
4.	$\left\{ \int \left(\frac{x^3}{6} + \frac{1}{3x^2}\right) dx \right\} = \frac{x^4}{6(4)} + \frac{x^{-1}}{(3)(-1)}$	M1: $x^n \rightarrow x^{n+1}$ A1: At least one of either $\frac{x^4}{6(4)}$ or $\frac{x^{-1}}{(3)(-1)}$. A1: $\frac{x^4}{6(4)} + \frac{x^{-1}}{(3)(-1)}$ or equivalent. e.g. $\frac{x^4}{6} + \frac{x^{-1}}{3}$ (they will lose the final mark if they express the deal with this expression)	M1A1A1
	Note that some candidates may change $\int \frac{x^3}{6} + \frac{1}{3x^2} dx = \int 3x^5 + 6dx$ in which case all	the function prior to integrating e.g. low the M1 if $x^n \rightarrow x^{n+1}$ for their changed	
	function and allow the	M1 for limits if scored	
	$\left\{\int_{1}^{\sqrt{3}} \left(\frac{x^3}{6} + \frac{1}{3x^2}\right) dx\right\} = \left(\frac{\left(\sqrt{3}\right)}{24}\right)$	$ + \frac{\left(\sqrt{3}\right)^{-1}}{-1(3)} - \left(\frac{(1)^4}{24} + \frac{(1)^{-1}}{-1(3)}\right) $	d M1
	2^{nd} dM1: For using limits of $\sqrt{3}$ and 1 on an int way round. The 2^{nd} M1 is depended	regrated expression and subtracting the correct ent on the 1 st M1 being awarded.	
	$= \left(\frac{9}{24} - \frac{1}{3\sqrt{3}}\right) - \left(\frac{1}{24} - \frac{1}{3}\right) = \frac{2}{3} - \frac{1}{9}\sqrt{3}$	$\frac{2}{3} - \frac{1}{9}\sqrt{3} \text{ or } a = \frac{2}{3} \text{ and } b = -\frac{1}{9}.$ Allow equivalent fractions for <i>a</i> and/or <i>b</i> and 0.6 recurring and/or 0.1 recurring but do not allow $\frac{6-\sqrt{3}}{9}$	Alcso
	This final mark is cao and cso – there	e must have been no previous errors	
			Total 5
	$\left\{ \int \left(\frac{x^3}{6} + \frac{1}{3x^2}\right) dx \right\} = \int \left(\frac{x^3}{6} + 3x\right) dx$	$\int \frac{3}{5} x = \frac{x^4}{6(4)} + \frac{3x^{-1}}{(-1)} M1A1A0$	
	$\left\{\int_{1}^{\sqrt{3}} \left(\frac{x^{3}}{6} + \frac{1}{3x^{2}}\right) dx\right\} = \left(\frac{\left(\sqrt{3}\right)^{4}}{24} + \frac{1}{3x^{2}}\right) dx$	$\frac{3\left(\sqrt{3}\right)^{-1}}{-1} - \left(\frac{(1)^4}{24} + \frac{3(1)^{-1}}{-1}\right) dM1$	
	$=\left(\frac{9}{24}-\frac{3}{\sqrt{3}}\right)-\left(\frac{1}{24}\right)$	$\left(+\frac{3}{-1}\right) = \frac{10}{3} - \sqrt{3} \text{ A0}$	
	$\left\{ \int \left(\frac{x^3}{6} + \frac{1}{3x^2}\right) dx \right\} = \int \left(\frac{x^3}{6} + \left(3x\right)\right) dx$	$\int^{-2} dx = \frac{x^4}{6(4)} + \frac{(3x)^{-1}}{(-1)}$ M1A1A0	
	$\left\{ \int_{1}^{\sqrt{3}} \left(\frac{x^{3}}{6} + \frac{1}{3x^{2}} \right) dx \right\} = \left(\frac{\left(\sqrt{3}\right)^{4}}{24} + \frac{\left(3\sqrt{3}\right)^{-1}}{-1} \right) - \left(\frac{\left(1\right)^{4}}{24} + \frac{\left(3\times1\right)^{-1}}{-1} \right) dM 1$		
	$=\left(\frac{9}{24}-\frac{1}{3\sqrt{3}}\right)-\left(\frac{1}{24}\right)$	$\left(\frac{1}{4} - \frac{1}{3}\right) = \frac{2}{3} - \frac{\sqrt{3}}{9} A0$	
	Note this is the correct answer	r but follows incorrect work.	

Question Number	S	cheme	Marks
5.(a)	Area <i>BDE</i> = $\frac{1}{2}(5)^2(1.4)$	M1: Use of the correct formula or method for the area of the sector	M1A1
	$=17.5 (cm^2)$	A1: 17.5 oe	
			[2]
(b)	Parts (b) and (c) c	an be marked together $5^2 + 7.5^2 = 6.1^2$	
$6.1^2 = 5^2$	$+7.5^2 - (2 \times 5 \times 7.5 \cos DBC)$ or	$\cos DBC = \frac{5^2 + 7.5^2 - 6.1^2}{2 \times 5 \times 7.5}$ (or equivalent)	M1
	M1: A correct stateme	nt involving the angle <i>DBC</i>	
	Angle $DBC = 0.943201$	awrt 0.943	Al
	Note that work for (b) may be	e seen on the diagram or in part (c)	[2]
(c) No	ote that candidates may work in deg	grees in (c) (Angle $DBC = 54.04deg rees$)	
	Area <i>CBD</i> = -	$\frac{1}{2}$ 5(7.5)sin(0.943)	
		Area $CBD = \frac{1}{2}5(7.5)\sin(\text{their } 0.943)$ or awrt	
Ar	Angle $EBA = \pi - 1.4 - "0.943"$ 15.2. (Note area of $CBD = 15.177$)		M1
(N	Maybe seen on the diagram)	A correct method for the area of triangle <i>CBD</i> which can be implied by awrt 15.2	
	$\pi - 1.4 -$	- "their 0.943"	
A value	A value for angle <i>EBA</i> of awrt 0.8 (from 0.7985926536 or 0.7983916536) or value for angle		M1
	<i>EBA</i> of (1.74159 – their an	gle <i>DBC</i>) would imply this mark.	
	$AB = 5\cos(\pi)$	<i>x</i> - 1.4 - "0.943")	
		or	
	$AE = 5\sin(\pi)$	z – 1.4 – "0.943")	
		$AB = 5\cos(\pi - 1.4 - \text{their } 0.943)$	
		$AB = 5\cos(0.79859) = 3.488577938$	
		Allow M1 for $AB = awrt 3.49$	
		Or	
		$AE = 5 \sin(\pi - 1.4 - \text{their } 0.943)$	
		AE = 5511(0.79839) = 5.581874305088	M1
		Allow M1 for $AE = a wit 5.56$ It must be clear that $\pi = 1.4 = "0.043$ " is	
		heing used for angle FRA	
		Note that some candidates use the sin	
		rule here but it must be used correctly –	
		do not allow mixing of degrees and	
	Area $EAB = \frac{1}{2}5\cos(\pi - 1.4 - 1)$	$(0.943'') \times 5\sin(\pi - 1.4 - 0.943'')$	
	This is dependent	t on the previous M1	
	and there must be no other errors in finding the area of triangle EAB		dM1
	$\frac{1}{1000 \text{ M1 for } 2}$	$\frac{\text{area } EAB = \text{awrt } 6.2}{+ 17.5 \pm 6.24} = -38.92$	
	Alea $ADCDE = 15.17$.	17.5 + 0.24 30.92	
ļ		awrt 38.9	Alcso
Noto that	t a sign appar in (b) can give the ski	use angle (2 108) and could lead to the accurat	[5]
answer in	n (c) – this would lose the final mar	k in (c)	10tai 9

Question Number	Scheme		Marks		
6(a)	$S = \frac{20}{1-160}$	M1: Use of a correct S_{∞} formula	M1A1		
	$S_{\infty} = \frac{1-\frac{7}{8}}{1-\frac{7}{8}}$, -100	A1: 160			
	Accept correct	answer only (160)			
			[2]		
(b)	$S = \frac{20\left(1 - \left(\frac{7}{8}\right)^{12}\right)}{12} = 12777324$	M1: Use of a correct S_n formula with $n = 12$ (condone missing brackets around 7/8)	M1A1		
	$J_{12} = 1 - \frac{7}{8}$, -127.77524	A1: awrt 127.8	1,11111		
	T & I in (b) requires all 12 terms to be calc	ulated correctly for M1 and A1 for awrt 127.8			
			[2]		
(c)	$20(1 - (7)^N)$	Applies S_N (GP only) with $a = 20$, $r = \frac{1}{8}$ and			
	$160 - \frac{20(1 - (\frac{1}{8})^{-})}{1 - 7} < 0.5$	"uses" 0.5 and their S_{∞} at any point in their	M1		
	$1-\frac{1}{8}$	working. (condone missing brackets around $7/8$)(Allow =, <, >, \ge , \le) but see note below.			
	$(7)^N$ $(7)^N$ (0.5)	Attempt to isolate $+160\left(\frac{7}{8}\right)^N$ or $+\left(\frac{7}{8}\right)^N$ oe			
	$160\left(\frac{7}{8}\right) < (0.5) \text{ or } \left(\frac{7}{8}\right) < \left(\frac{0.5}{160}\right)$	(Allow =, <, >, \geq , \leq) but see note below.	dM1		
		Dependent on the previous M1			
		Uses the power law of logarithms or takes logs base 0.875 correctly to obtain an equation or an inequality of the form			
	$N\log\left(\frac{7}{8}\right) < \log\left(\frac{0.5}{160}\right)$	$N \log\left(\frac{7}{8}\right) < \log\left(\frac{0.5}{\text{their } S_{\infty}}\right)$ or	M1		
		$N > \log_{0.875} \left(\frac{0.5}{\text{their } S_{\infty}} \right)$ (Allow =, <, >, ≥, ≤) but see note below.			
	$N > \frac{\log(\frac{0.5}{160})}{\log(\frac{7}{8})} = 43.19823 \Rightarrow N = 44$	$N = 44$ (Allow $N \ge 44$ but not $N > 44$	A1 cso		
	An incorrect inequality statement at any stage Some candidates do not realise that the direc of their solution. BUT it is possible to gain working seen.	e in a candidate's working loses the final mark. tion of the inequality is reversed in the final line full marks for using =, as long as no incorrect			
			[4]		
			Total 8		
	<u>Trial & Improvement Method in (c):</u>				
	1 st M1: Attempts 160 – S_N or S_N with at least one value for $N > 40$				
	2^{rd} M1: Attempts 160 – S_N or S_N with $N = 43$ or $N = 44$				
	5 IVII. FOI EVIDENCE OF EXAMINING $100 - S_N$ OF S_N for both $IV = 45$ and $IV = 44$ with both values				
	Eg: $160 - S_{12} = awrt 0.51 and 160 - S_{14} = awrt 0.45$				
	or $S_{43} = awrt 159.49$ and $S_{44} = awrt 159.55$				
	$A1: N = 44 \operatorname{cso}$				
	Answer of $N = 44$ only with no working scores no marks				

Question Number	Scheme		Marks
	(i) $9\sin(\theta + 60^\circ)$	$=4; 0 \le \theta < 360^{\circ}$	
7.	(ii) $2\tan x - 3\sin x$	$x = 0; \ -\pi \le x < \pi$	
(i)	$\sin(\theta + 60^{\circ}) = \frac{4}{9}$, so $(\theta + 60^{\circ}) = 26.3877$	Sight of $\sin^{-1}\left(\frac{4}{9}\right)$ or awrt 26.4° or 0.461°	
	$(\alpha = 26.3877)$	Can also be implied for $\theta = awrt - 33.6$ (i.e. $26.4 - 60$)	Ml
		θ + 60° = either "180 – their α " or	
		" 360° + their α " and not for θ = either	
	So, $\theta + 60^{\circ} = \{153.6122, 386.3877\}$	"180 – their α " or "360° + their α ". This	M1
		can be implied by later working. The candidate's α could also be in radians but do not allow mixing of degrees and radians.	
		A1: At least one of	
	and $\theta = \{93.6122, 326.3877\}$	awrt 93.6° or awrt 326.4°	A1 A1
		A1: Both awrt 93.6° and awrt 326.4°	
	Both answers are cso and m	nust come from correct work	
	In an otherwise fully correct solution deduc	t the final A1 for any extra solutions in range	
			[4]
(ii)	$2\left(\frac{\sin x}{\cos x}\right) - 3\sin x = 0$	Applies $\tan x = \frac{\sin x}{\cos x}$	M1
	Note: Applies $\tan x = \frac{\sin x}{\cos x}$ can be implied	1 by $2\tan x - 3\sin x = 0 \Rightarrow \tan x (2 - 3\cos x)$	
	$2\sin x - 3\sin x$	$\sin x \cos x = 0$	
	sin x(2-3)	$3\cos x) = 0$	
	$\cos x = \frac{2}{3}$	$\cos x = \frac{2}{3}$	A1
		A1: One of either awrt 0.84 or awrt -0.84	-
	$x = \operatorname{awrt}\{0.84, -0.84\}$	A1ft: You can apply ft for $x = \pm \alpha$, where	A1A1ft
		$\alpha = \cos^{-1}k$ and $-1 \le k \le 1$	
	In this part of the solution, if there are an correct solution	ny extra answers in range in an otherwise withhold the A1ft	
		Both $x = 0$ and $-\pi$ or awrt -3.14 from	
	$\{\sin x = 0 \Rightarrow\} x = 0 \text{ and } -\pi$	sinx = 0 In this part of the solution, ignore extra solutions in range.	B1
	Note solutions are: $x = \{-3.1415, -0.8410, 0, 0.8410\}$		
	Ignore extra solutions outside the range		
	For all answers in degrees in (ii) M1A1A0A1ftB0 is possible		
	Allow the use of θ in place of x in (ii)		[5]
			Total 9

Question Number	Scheme			Marks
8.	Graph of $y = 3^x$ and solving	$3^{2x} - 9(3^x) + 18$	3 = 0	
(a)		At least two of (See	the three criteria correct. notes below.)	B1
		All thre (See	e criteria correct. notes below.)	B1
	y ▲	Criteria numb curve for $x \ge 0$	er 1: Correct shape of and at least touches the	
		positive <i>y</i> -axis. Criteria numb curve for $x < 0$	er 2: Correct shape of . Must not touch the x-	
	(0, 1)	axis or have an Criteria numb	y turning points. er 3: (0, 1) stated or in	
	O x	a table or 1 marked on the <i>y</i> -axis. Allow (1, 0) rather than (0, 1) if		
		marked in the " axis.	correct" place on the y-	
	· · · · · · · · · · · · · · · · · · ·			[2]
(b)	$(3^x)^2 - 9(3^x) + 18 = 0$	Forms a quadra	tic of the correct form in	
	or	3^x or in "y" whe	ere " y " = 3^x or even in x	M1
	$y = 3^x \Longrightarrow y^2 - 9y + 18 = 0$	where " x " = 3^x		
	{ $(y-6)(y-3) = 0$ or $(3^x - 6)(3^x - 3) = 0$ }			
	$y = 6$, $y = 3$ or $3^x = 6$, $3^x = 3$	Both $y = 6$ and	d y = 3.	A1
		A valid method	for solving $3^x = k$	
	$\left\{3^x = 6 \implies\right\} x \log 3 = \log 6$	where $k > 0, k$	$\neq 1, k \neq 3$	
	or $r = \frac{\log 6}{\log 10}$ or $r = \log 6$		$x \log 3 = \log k$ or	d M1
	$\log 3$ $\log 3$	to give either	$x = \frac{\log k}{\log 3}$ or $x = \log_3 k$.	
	x = 1.63092	awrt 1.63		A1cso
	Provided the first M1A1 is scored, the second	1 M1A1 can be in	mplied by awrt 1.63	
	<i>x</i> = 1	x = 1 stated as a solution from <i>any</i> working.		B1
				[5]
				Total 7

Question Number	Scheme	
	Mark (a) and (b) together	
9. (a)	$OQ^{2} = (6\sqrt{5})^{2} + 4^{2} \text{ or } OQ = \sqrt{(6\sqrt{5})^{2} + 4^{2}} \{= 14\}$ Uses the addition form of Pythagoras on $6\sqrt{5}$ and 4. Condone missing brackets on $(6\sqrt{5})^{2}$ (Working or 14 may be seen on the diagram)	M1
	$y_{Q} = \sqrt{14^{2} - 11^{2}}$ $y_{Q} = \sqrt{(\text{their } OQ)^{2} - 11^{2}}$ Must include $\sqrt{\text{ and is dependent on the first M1 and requires OQ > 11}}$	
	$=\sqrt{75} \text{ or } 5\sqrt{3} \qquad \qquad \sqrt{75} \text{ or } 5\sqrt{3}$	A1cso
		[3]
(b)	$(x-11)^{2} + (y-5\sqrt{3})^{2} = 16$ $M1: (x \pm 11)^{2} + (y \pm \text{their } k)^{2} = 4^{2}$ Equation must be of this form an must use x and y not other letters could be their last answer to part (a). Allow their $k \neq 0$ or just the letter k. A1: $(x-11)^{2} + (y-5\sqrt{3})^{2} = 16$ or $(x-11)^{2} + (y-5\sqrt{3})^{2} = 4^{2}$ NB $5\sqrt{3}$ must come from correct	
	Allow in expanded form for the final A1 e.g. $r^2 = 22r + 121 + v^2 = 10\sqrt{3}v + 75 = 16$	
	0.5. x 22x + 121 + y = 10005y + 15 - 10	[2]
		Total 5
	Watch out for:	100015
	(a) $OQ = \sqrt{(6\sqrt{5})^2 + 4^2} = \sqrt{46} \text{ M1}$ $y_Q = \sqrt{46 - 11^2} \text{ M0} (OQ < 11)$ $y_Q = \sqrt{75} \text{ A0}$ (b) $(x - 11)^2 + (y - 5\sqrt{3})^2 = 16 \text{ M1A0}$	

Question Number	Scheme			Marks	
10. (a)	$\frac{1}{2}(9x+6x)4x$ or $2x \times 15x$ or $\left(\frac{1}{2}4x \times (9x-6x)+6x \times 4x\right)$ or $6x^{2}+24x^{2}$ or $\left(9x \times 4x-\frac{1}{2}4x \times (9x-6x)\right)$ or $36x^{2}-6x^{2}$	M1: Correct trapezium. Note that 3 incorrect we If there is a area of the to M1 but the are any slip	t attempt at the area of a $0x^2$ on its own or $30x^2$ from ork e.g. $5x \times 6x$ is M0. clear intention to find the trapezium correctly allow the A1 can be withheld if there s.	M1A1cso	
	$\Rightarrow 30x^2y = 9600 \Rightarrow y = \frac{9600}{30x^2} \Rightarrow y = \frac{320}{x^2} *$	A1: Correct intermediat " y =" is re	t proof with at least one e step and no errors seen. quired.		
				[2]	
(b)	$\left(S=\right)\frac{1}{2}(9x+6x)4x+\frac{1}{2}(9x+6x)4x+6xy+9xy+5xy+4xy$				
	M1: An attempt to find the area of six faces of the prism. The 2 trapezia may be combined as				
	$(9x + 6x)4x$ or $60x^2$ and the 4 other faces may be combined as $24xy$ but all six faces must be				
	included. There must be attempt at the areas of two trapezia that are dimensionally correct. A1: Correct expression in any form.				
	Allow just $(S =) 60x^2 + 24xy$ for M1A1				
	$y = \frac{320}{x^2} \Rightarrow (S =) 30x^2 + 30x^2 + 24x \left(\frac{320}{x^2}\right)$				
	Substitutes $y = \frac{320}{x^2}$ into their expression for <i>S</i> (may be done earlier). <i>S</i> should have at least				
	one x^2 term and one <i>xy</i> term but there may be other terms which may be dimensionally incorrect.				
	So, $(S =) 60x^2 + \frac{7680}{x} *$		Correct solution only. " $S =$ " is not required here.	A1* cso	

10(c)	$\frac{\mathrm{d}S}{\mathrm{d}x} = 120x - 7680x^{-2} \left\{ = 120x - \frac{7680}{x^2} \right\}$	M1: Either $60x^2 \rightarrow 120x$ or $\frac{7680}{x} \rightarrow \frac{\pm \lambda}{x^2}$	M1
		A1: Correct differentiation (need not be simplified).	A1 aef
	$120x - \frac{7680}{x^2} = 0$ $\Rightarrow x^3 = \frac{7680}{120}; = 64 \Rightarrow x = 4$	M1: $S' = 0$ and "their $x^3 = \pm$ value" or "their $x^{-3} = \pm$ value" Setting their $\frac{dS}{dx} = 0$ and "candidate's ft <u>correct</u> power of $x = a$ value". The power of x must be consistent with their differentiation. If inequalities are used this mark cannot be gained until candidate states value of x or S from their x without inequalities. $S' = 0$ can be implied by $120x = \frac{7680}{x^2}$. Some may spot that $x = 4$ gives S' = 0 and provided they clearly show $S'(4) = 0allow this mark as long as S' is correct. (If S'is incorrect this method is allowed if theirderivative is clearly zero for their value of x)A1: x = 4 only (x^3 = 64 \implies x = \pm 4 scores A0)Note that the value of x is not explicitly requiredso the use of x = \sqrt[3]{64} to give S = 2880 wouldimply this mark.$	M1A1cso
	Note some candidates stop here and do not go on to find S – maximum mark is 4/6		
	{ $x = 4$,} $S = 60(4)^2 + \frac{7680}{4} = 2880 \text{ (cm}^2\text{)}$	Substitute candidate's value of $x (\neq 0)$ into a formula for <i>S</i> . Dependent on both previous M marks.	dd M1
		2880 cso (Must come from correct work)	A1 cao and cso
			[6]

10(d)	M1: Attempt $S''(x^n \to x^{n-1})$ and considers		
	$\frac{d^2S}{dx^2} = 120 + \frac{15360}{x^3} > 0$ $\Rightarrow \text{ Minimum}$ sign. $\frac{d^2S}{dx^2} = 120 + \frac{15360}{x^3} > 0$ $\Rightarrow \text{ Minimum}$ sign. This mark requires an attempt at the second derivative and some consideration of its sign . There does not necessarily need to be any substitution. An attempt to solve $S'' = 0$ is M0 A1: $120 + \frac{15360}{x^3}$ and > 0 and conclusion. Requires a correct second derivative of $120 + \frac{15360}{x^3}$ (need not be simplified) and a valid reason (e.g. > 0), and conclusion. Only follow through a correct second derivative i.e. x may be incorrect but must be positive and/or S'' may have been <u>evaluated incorrectly</u> .	M1A1ft	
	A correct S" followed by $S''("4") = "360"$ therefore minimum would score no marks in (d) A correct S" followed by $S''("4") = "360"$ which is positive therefore minimum would score		
	both marks		
		[2]	
	Note parts (c) and (d) can be marked together.		
		Total 14	